Hopfield Neural Network for Dynamic Path Planning and Obstacle Avoidance

نویسنده

  • Michail G. Lagoudakis
چکیده

Navigation is a central issue in the area of autonomous agents and the dynamic nature of the real world environments requires fast path planning methods for successful operation of the agent in them. We present a dynamic path planning and obstacle avoidance scheme based on a Hopfield neural network. The external input (sensory input) provides information to the system about the position of the obstacles, the current position of the agent and the desired target position in the agent’s configuration space. The dynamics of the network create an equilibrium surface homomorphic to the configuration space from where a path can be easily constructed by applying the steepest ascent technique. In the dynamic case, the network is updated continuously and the system suggests the most appropriate next move at each time. The provided examples demonstrate the approach in both static and dynamic cases. At the end, a detailed discussion about the capabilities of the system, possible extensions and future work, points out a promising direction of research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

Obstacle Avoidance Using Modified Hopfield Neural Network for Multiple Robots

In this paper, dynamic path planning of two mobile robots using a modified Hopfield neural network is studied. An area which excludes obstacles and allows gradually changing of activation level of neurons is derived in each step. Next moving step can be determined by searching the next highest activated neuron. By learning repeatedly, the steps will be generated from starting to goal points. A ...

متن کامل

Neural Network Dynamics for Path Planning and Obstacle Avoidance

A model of a topologically organized neural network of a Hopfield type with nonlinear analog neurons is shown to be very effective for path planning and obstacle avoidance. This deterministic system can rapidly provide a proper path, from any arbitrary start position to any target position, avoiding both static and moving obstacles of arbitrary shape. The model assumes that an (external) input ...

متن کامل

Obstacle Avoidance by Using Modified Hopfield Neural Network

In this paper, path planning of a mobile robot by using a modified Hopfield neural network is studied. An area, which excludes obstacles and allows gradually changing of activation level of neurons from a starting point to a goal, is derived. Path can be constructed in this area by searching the next highest activated neuron. Even though asymmetric weight matrix is used, decreasing of system en...

متن کامل

Path Planning and Obstacle Avoidance for Mobile Robots in a Dynamic Environment

Because traditional obstacle avoidance path planning methods have a lot of problems, such as large amount of calculation, low efficiency, poor optimization capability, and lack of dealing with dynamic obstacles, a new method which implements real-time path planning of mobile robot is presented. The method builds a neural network model for the robot workspace, and then it uses the model to obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007